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Lemma 0.1 (for Exercise 1). Let z, w ∈ R2. Then z ·w > 0 if and only if the angle between
z, w is less than π

2
.

Proof. We have the equality z · w = ‖z‖‖w‖ cos θ where θ is the angle between z, w and
θ ∈ [0, π]. We know that ‖z‖, ‖w‖ > 0, so z · w > 0 ⇐⇒ cos θ > 0. For θ ∈ [0, π],
cos θ > 0 ⇐⇒ θ > π

2
.

Note: In the following, part (b) is Exercise I.4.2 from the textbook.

Proposition 0.2 (Exercise 1). Let z1, z2 ∈ C and think of them as vectors in the plane.

1. If z1z2 is real, then z1, z2 are collinear.

2. If z1z2 is real and positive, then z1, z2 are positive multiples of each other.

3. If z1z2 is imaginary, then z1, z2 are perpendicular.

Proof. First we prove (1). Let z1 = x1 + iy1 and z2 = x2 + iy2. Then

z1z2 = (x1 − iy1)(x2 + iy2) = (x1x2 + y1y2) + i(x1y2 − y1x2)

If z1z2 is real, then x1y2− y1x2 = 0 so x1y2 = y1x2. Now we consider three cases: (i) x2 = 0,
(ii) y2 = 0 and x2 6= 0, and (iii) x2 6= 0 and y2 6= 0.

In case (i), x2 = 0, so z2 is purely imaginary, and one of x1 or y2 must be zero. If y2 = 0,
then z2 = 0 so every z1 is collinear with it. If x1 = 0, then z1 is also purely imaginary, so
z1, z2 are collinear. In case (ii), y2 = 0 and x2 6= 0, so y1 = 0. Then both z1, z2 are real, so
they are collinear. In case (iii), we can divide the equation by x2 and y2 to get

x1
x2

=
y1
y2

x1 =
y1
y2
x2 y1 =

x1
x2
y2 =

y1
y2
y2

Then z1 = x1 + iy1 = y1
y2
x2 + iy1

y2
y2 = y1

y2
z2, so they are collinear.

Now we prove (2). Suppose that z1z2 is real and positive. By part (1), z1, z2 are collinear.
Notice that Re z1z2 = z1 · z2. Thus by the previous lemma, the angle between z1, z2 is less
than π

2
, z1, z2 must point in the same direction. Hence they are positive multiples of each

other. Finally, we prove (3). If Re z1z2 = 0, then z1 · z2 = 0, so z1, z2 are perpedicular.
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Proposition 0.3 (Exercise I.7.2). Let z1, z2, z3 be points in the complex plane, with z1 6= z2.
Then the distance from z3 to the line determined by z1 and z2 is

1

2|z2 − z1|
|z1(z2 − z3) + z2(z3 − z1) + z3(z1 − z2)|

In particular, the points z1, z3, z3 are collinear if and only if z1(z2−z3)+z2(z3 +z1)+z3(z1−
z2) = 0.

Proof. We can apply the isometry z 7→ z − z1, so we can replace assume z1 = 0 without
loss of generality. Then we apply another isometry, rotation clockwise by arg z2, so we can
also assume without loss of generality that z2 is on the positive real axis. Now, the line
through the points z1, z2 is the real axis, and the distance from z3 to this line is Im z3. After
substituting z1 = 0 and z2 = z2 we get

1

2|z2 − z1|
|z1(z2 − z3) + z2(z3 − z1) + z3(z1 − z2)| =

1

2|z2|
|z2z3 − z3z2|

=
1

2z2
z2|z3 − z3| =

1

2
|z3 − z3| =

1

2
|x3 − iy3 − x3 − iy3| =

1

2
| − 2iy3| = | − iy3| = Im z3

Thus the quantity claimed is equal to the distance from z3 to the line determined by z1 and
z2.

(Proof of “In particular...”) If the distance is zero, then

1

2|z2 − z1|
|z1(z2−z3)+z2(z3−z1)+z3(z1−z2)| = 0 =⇒ z1(z2−z3)+z2(z3+z1)+z3(z1−z2) = 0

Conversely, if z1(z2 − z3) + z2(z3 + z1) + z3(z1 − z2) = 0, then the distance, given by
1

2|z2−z1| |z1(z2 − z3) + z2(z3 − z1) + z3(z1 − z2)|, is zero.

Lemma 0.4 (for Exercise I.9.2). Let a, b ∈ C be nonzero. Then arg a = 2 arg b ⇐⇒ ab2 is
real and positive.

Proof. Suppose that arg a = 2 arg b. Let b = rb(cos θ+ i sin θ), so a = ra(cos 2θ+ i sin 2θ) for
some ra, rb, θ ∈ R with ra, rb > 0. Then using De Moivre’s formula and expanding, we get

ab2 = ra(cos 2θ − i sin 2θ)r2b (cos θ + i sin θ)2

= rar
2
b (cos 2θ − i sin 2θ)(cos 2θ + i sin 2θ)

= rar
2
b

(
(cos 2θ)2 + (sin 2θ)2

)
= rar

2
b

Hence ab2 is the positive real number rar
2
b . Now suppose that ab2 is real and positive. Write

a and b as a = ra(cos θa + i sin θa) and b = rb(cos θb + i sin θb) for ra, rb, θa, θb ∈ R with
ra, rb > 0. Then

ab2 = ra(cos θa − i sin θa)r
2
b (cos 2θb + i sin 2θb)

= rar
2
b ((cos θa cos 2θb + sin θa sin 2θb) + i(cos θa sin 2θb − sin θa cos 2θb))
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By hypothesis, ab2 is real, so

cos θa sin 2θb − sin θa cos 2θb = 0 =⇒ cos θa sin 2θb = sin θa cos 2θb

First suppose that both sides of this equality are zero. Then there are four cases: (1) cos θa =
sin θa = 0, (2) cos θa = cos 2θb = 0, (3), sin 2θb = sin θa = 0, and (4) sin 2θb = cos 2θb = 0.
Case (1) implies that a = 0 and case (4) implies b = 0, which contradicts they hypothesis
that ab2 > 0, so we rule out (1) and (4). In case (2), both a and b2 must be purely imaginary,
that is, a = αi and b2 = βi for some α, β ∈ R. Then

ab2 = −αiβi = αβ > 0

so α, β > 0. Thus both a, b2 lie on the positive imaginary axis, so arg a = π
2

and arg b = π
4
,

so arg a = 2 arg b. In case (3), both a and b must be purely real, and we have

b2 > 0 and ab2 = ab2 > 0 =⇒ a > 0

Since b2 is real, arg b ∈ {0, 2π}, so 2 arg b = 0 = arg a. This concludes our consideration of
the above four cases. Now assuming cos θa 6= 0 and cos 2θb 6= 0, we can rewrite the equation

cos θa sin 2θb = sin θa cos 2θb

as

sin θa
cos θa

=
sin 2θb
cos 2θb

=⇒ tan θa = tan 2θb

On the interval
(
−π

2
, π
2

)
, the tangent function is injective, so θa = 2θb mod 2π. That is,

arg a = 2 arg b.

Lemma 0.5 (for Exericse I.9.2). Let z, w ∈ C. Then

zw + zw = 2(Re zRew + Im z Imw) ∈ R

Proof. Let z = x+ iy and w = u+ iv. The proof is simply a calculation:

zw + zw = (x− iy)(u+ iv) + (x+ iy)(u− iv) = 2(ux+ vy)

Proposition 0.6 (Exercise I.9.2). Let z1, z3, z3 be distinct points on the unit circle. Then

arg
z1
z2

= 2 arg
z3 − z1
z3 − z2

Proof. Let a = z1
z2

and b = z3−z1
z3−z2 . Then

ab2 =

(
z1
z2

)(
z3 − z1
z3 − z2

)2

=
z1(z

2
3 − 2z3z1 + z21)

z2(z23 − 2z3z2 + z22)
=
z1z

2
3 − 2z3z1z1 + z21z1

z23z2 − 2z3z2z2 + z22z2

=
z1z

2
3 − 2z3|z1|2 + z1|z1|2

z2z23 − 2z3|z2|2 + z2|z2|2
=
z1z

2
3 − 2z3 + z1

z2z23 − 2z3 + z2
=
z1z

2
3 − 2z3 + z1

z2z23 − 2z3 + z2

(
z3
z3

)
=
z3z1 + z1z3 − 2

z3z2 + z2z3 − 2
=
z3z1 + z1z3 − 2

z3z2 + z2z3 − 2
=

Re z3z1 − 2

Re z3z2 − 2
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By the above lemma
z3z1 + z1z3 ∈ R and z3z2 + z2z3 ∈ R

so ab2 ∈ R provided the denominator is nonzero. In addition, z3z1, z3z2 lie on the unit circle,
so

Re(z3z1) = x3x1 + y3y1 < 1 + 1 = 2

Re(z3z2) = x3x2 + y3y2 < 1 + 1 = 2

Thus Re z3z1 − 2 < 0 and Re z3z2 − 2 < 0, so

ab2 =
Re z3z1 − 2

Re z3z2 − 2
> 0

Thus arg a = 2 arg b.

Proposition 0.7 (Exercise I.11.1). The cube roots of i are

√
3

2
+

1

2
i −

√
3

2
+

1

2
i − i

Proof. We have i = 1(cos(π/2)+ i sin(π/2)). Apply the formula in the book: The cube roots
of i are

(1)1/3
(

cos

(
π/2 + 2πk

3

)
+ i sin

(
π/2 + 2πk

3

))
for k = 0, 1, 2.

Proposition 0.8 (Exercise I.11.4). The sum of the nth roots of 1 equals zero for n ≥ 2.

Proof. Let λ = cos
(
2π
n

)
+i sin

(
2π
n

)
be the primitive nth root of 1. (Note: n ≥ 2 =⇒ λ 6= 0.)

Then the nth roots of 1 are λ, λ2, λ3, . . . , λn. Using the formula for the sum of a finite
geometric progression,

λ+ λ2 + . . .+ λn =
1− λn

1− λ
Since λn = 1, we have 1− λn = 0 so the sum is zero.

Proposition 0.9 (Exercise I.11.5, first identity). Let w be an n-th root of 1 with w 6= 1.
Then for n ≥ 2,

n∑
k=1

kwk−1 = 1 + 2w + 3w2 + . . .+ nwn−1 =
n

w − 1

Proof. Let w be an n-th root of 1 with w 6= 1 and n ≥ 2. First we separate out a sum
1 + w + w2 + . . .+ wn−1, which by Exercise I.11.4 is zero.

n∑
k=1

kwk−1 =
n∑
k=1

(
wk−1 + (k − 1)wk−1

)
=

n∑
k=1

wk−1 +
n∑
k=1

(k − 1)wk−1 =
n∑
k=1

(k − 1)wk−1
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Now we shift indices by (k − 1) 7→ k. After shifting indices, the k = 0 term is zero, so we
can change the lowest index from zero to 1. Finally, we factor out a w.

n∑
k=1

(k − 1)wk−1 =
n−1∑
k=0

kwk =
n−1∑
k=1

kwk = w
n−1∑
k=1

kwk−1

Combining the work of the two previous strings of equalities, we get an identity to reduce
the top index of the sum we want to consider.

n−1∑
k=1

kwk−1 = w−1
n∑
k=1

kwk−1

Now we pull off the nth term and use our above identity.

n∑
k=1

kwk−1 = nwn−1 +
n−1∑
k=1

kwk−1 = nwn−1 + w−1
n∑
k=1

kwk−1

Partially solving for our sum, we get

(
1− w−1

) n∑
k=1

kwk−1 = nwn−1

Thus

n∑
k=1

kwk−1 =
nwn−1

1− w−1
=

nwn−1

1− w−1
(w
w

)
=

nwn

w − 1
=

n

w − 1

Proposition 0.10 (Exercise I.11.5, second identity). Let w be an n-th root of 1 with w 6= 1.
Then for n ≥ 2,

n∑
k=1

k2wk−1 = 1 + 4w + 9w2 + . . .+ n2wn−1 =
n2

w − 1
− 2n

(w − 1)2

Proof. Let w be an n-th root of 1 with w 6= 1 and n ≥ 2. First we separate out terms
1 + w + w2 + . . . + wn−1, which is zero by Exercise I.11.4. Then we factor k2 − 1 as a
difference of squares.

n∑
k=1

k2wk−1 =
n∑
k=1

wk−1 +
n∑
k=1

(k2 − 1)wk−1 =
n∑
k=1

(k − 1)(k + 1)wk−1

Now we change indices (k−1) 7→ k, and notice that the k = 0 term is zero, so we can change
the lower index back to 1.

n∑
k=1

(k − 1)(k + 1)wk−1 =
n−1∑
k=0

k(k + 2)wk =
n−1∑
k=1

(k2 + 2k)wk =
n−1∑
k=1

k2wk + 2
n−1∑
k=1

kwk
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Now we apply the first identity, proved above, using the equality
∑n−1

k=1 kw
k =

∑n
k=1 kw

k−1

proved en route to the first identity.

n−1∑
k=1

k2wk + 2
n−1∑
k=1

kwk =
n−1∑
k=1

k2wk + 2
n∑
k=1

kwk−1 =

(
n−1∑
k=1

k2wk

)
+

2n

w − 1

Combining our work up to this point and rearranging terms, we have

w

n−1∑
k=1

k2wk−1 =
n−1∑
k=1

k2wk =
−2n

w − 1
+

n∑
k=1

k2wk−1

Dividing through by w gives

n−1∑
k=1

k2wk−1 = (w−1)

(
−2n

w − 1
+

n∑
k=1

k2wk−1

)
=

−2n

w(w − 1)
+ w−1

n∑
k=1

k2wk−1

Now we return to working with our original sum. We split off the n-th term, and apply our
formula above.

n∑
k=1

k2wk−1 = n2wn−1 +
n−1∑
k=1

k2wk−1 = n2wn−1 − 2n

w(w − 1)
+ w−1

n∑
k=1

k2wk−1

Partially solving for our sum, we get

(
1− w−1

) n∑
k=1

k2wk−1 = n2wn−1 − 2n

w(w − 1)

And then dividing through by (1− w−1) we get

n∑
k=1

k2wk−1 =
n2wn−1

1− w−1
− 2n

w(w − 1)(1− w−1)
=

n2wn−1

1− w−1
(w
w

)
− 2n

(w − 1)2

=
n2wn

w − 1
− 2n

(w − 1)2
=

n2

w − 1
− 2n

(w − 1)2

which is exactly the identity we wanted to show.

Proposition 0.11 (Exercise II.6.3, not assigned, but used in Exercise II.8.1). In polar
coordinates, the Cauchy-Riemann equations are

r
∂u

∂r
=
∂v

∂θ

∂u

∂θ
= −r∂v

∂r

Proposition 0.12 (Exercise II.8.1). Let f be holomorphic on an open disk D. If any of the
following hold in D, then f is constant in D.

1. f ′ = 0
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2. f is real-valued

3. |f | is constant

4. arg f is constant

Proof. Throughout, let f(z) = f(x+iy) = u(x, y)+iv(x, y), and all statement are interpreted
“in D”.

(1) Suppose f ′ = 0. Then by the Cauchy-Riemann equations, ∂u
∂x

= ∂v
∂x

= ∂v
∂x

= ∂v
∂y

= 0,
so by the analogous result in real variables, u and v are constant. Hence f is constant.

(2) Suppose f is real-valued in D, that is, v = 0, so ∂v
∂x

= ∂v
∂y

= 0. Then by the Cauchy-

Riemann equations ∂u
∂x

= ∂u
∂y

= 0, so u and v are constant, so f is constant.

(3) Suppose |f | is constant. Then

f(x+ iy) = r(x, y)
(

cos θ(x, y) + i sin θ(x, y)
)

where r(x, y) = |f | = r0 for some constant r0 ∈ R, so

u(x, y) = r0 cos θ(x, y) v(x, y) = r0 sin θ(x, y)

Then
∂u

∂r
=
∂v

∂r
= 0

So by the polar form of the Cauchy-Riemann equations (Exercise II.6.3),

∂v

∂θ
=
∂u

∂θ
= 0

That is, u and v do not depend on θ. Since they depend neither on r nor θ, they must be
constant. Thus f is constant.

(4) Suppose arg f is constant. Then

f(x+ iy) = r(x, y)
(

cos θ(x, y) + i sin θ(x, y)
)

where θ(x, y) = arg f = θ0 for some constant θ0 ∈ R, so

u(x, y) = r(x, y) cos θ0 v(x, y) = r(x, y) sin θ0

Then
∂u

∂θ
=
∂v

∂θ
= 0

So by the polar form of the Cauchy-Riemann equations (Exercise II.6.3), for all r we have

r
∂u

∂r
= r cos θ0 = 0

−r∂v
∂r

= −r sin θ0 = 0

For any θ0 ∈ R, cos θ0 and sin θ0 are never zero at the same time, so we must have r = 0
everywhere. Thus f(z) = 0 for all z, so f is constant.
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Lemma 0.13 (for Exercise II.8.2). Let f be a function defined on an open set G ⊂ C and
z0 ∈ G, and suppose that the limit

lim
z→z0

f(z)

exists and is equal to L. Then the limit

lim
z→z0

f(z)

exists and is equal to L.

Proof. Let ε > 0. By hypothesis, there exists δ > 0 so that

|z − z0| < δ =⇒ |f(z)− L| < ε

Since |z − z0| = |z − z0| = |z − z0|, we have |z − z0| < δ ⇐⇒ |z − z0| < δ. Thus

|z − z0| < δ =⇒ |f(z)− L| < ε

so the limit
lim
z→z0

f(z)

exists and is equal to L.

Lemma 0.14 (for Exercise II.8.2). Let f be a function defined on an open set G ⊂ C and
z0 ∈ G, and suppose that the limit

lim
z→z0

f(z)

exists and is equal to L. Then the limit

lim
z→z0

f(z)

exists and and is equal to L.

Proof. Let ε > 0. By hypothesis, there exists δ > 0 such that

|z − z0| < δ =⇒ |f(z)− L| < ε

Since |f(z)− L| = |f(z)− L| = |f(z)− L|, we also have

|z − z0| < δ =⇒ |f(z)− L| < ε

Thus the claimed limit exists and is equal to L.

Proposition 0.15 (Exercise II.8.2). Let f be holomorphic in the open set G. Then g(z) =
f(z) is holomorphic in G∗ = {z : z ∈ G}. In particular, for z0 ∈ G∗,

g′(z0) = f ′(z0)
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Proof. Let z0 ∈ G∗, so z0 ∈ G. Since f is differentiable at z0, the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists and is equal to f ′(z0). Then by Lemma 0.13,

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0)

Using basic properties of the complex conjugate, we can rewrite our difference quotient as

f(z)− f(z0)

z − z0
=
g(z)− g(z0)

z − z0
=
g(z)− g(z0)

z − z0
=

(
g(z)− g(z0)

z − z0

)
Thus the limit

lim
z→z0

(
g(z)− g(z0)

z − z0

)
exists and has value f ′(z0). So by Lemma 0.14,

lim
z→z0

(
g(z)− g(z0)

z − z0

)
= f ′(z0) =⇒ lim

z→z0

g(z)− g(z0)

z − z0
= f ′(z0)

Thus g is differentiable at z0, with g′(z0) = f ′(z0). Thus g is holomorphic on G∗.

Proposition 0.16 (Exercise II.16.1). The function u(x, y) = ax3 + bx2y + cxy2 + dy3 is
harmonic c = −3a and b = −3d. When u is harmonic, its harmonic conjugate is

v(x, y) = dx3 − cx2y + bxy2 − ay3

Proof. If u is harmonic, then

∂2u

∂x2
= 6ax+ 2by = −∂

2u

∂y2
= −6dy − 2cx =⇒ 6a = −2c and 2b = −6d

Thus c = −3a and b = −3d. Conversely, for any a, d ∈ R, if we set c = −3a and b = −3d,
then u is harmonic, by the same calculation above. A harmonic conjugate v for u satisfies

∂v

∂y
= 3ax2 + 2bxy + cy2 =⇒ v = 3ax2y + bxy2 +

1

3
cy3 + C(x)

∂v

∂x
= −bx2 − 2cxy − 3dy2 =⇒ v = −1

3
bx3 − cx2y − 3bxy +D(y)

Since c = −3a andd b = −3d by assumption,

v(x, y) = dx3 − cx2y + bxy2 − ay3
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Proposition 0.17 (Exercise II.16.8). If u is a real-valued harmonic function, then the func-
tion ∂u

∂z
is holomorphic.

Proof. Let u : R2 → R be harmonic. Then define f : C→ C by f(x+ iy) = ∂u
∂z

(x, y).

f =
∂u

∂z
=

1

2

(
∂u

∂x
− i∂u

∂y

)
Then using the fact that mixed partials are equal,

∂f

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
f

=
1

2

(
∂

∂x
+ i

∂

∂y

)
1

2

(
∂u

∂x
− i∂u

∂y

)
=

1

4

(
∂

∂x

∂u

∂x
− i ∂

∂x

∂u

∂y
+ i

∂

∂y

∂u

∂x
+

∂

∂y

∂u

∂y

)
=

1

4

(
∂2u

∂x2
− i ∂

2u

∂x∂y
+ i

∂2u

∂y∂x
+
∂2u

∂y2

)
=

1

4

(
∂2u

∂x2
+
∂2u

∂y2

)
which is zero since u is harmonic. Thus ∂f

∂z
= 0, so f is holomorphic.
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