Homework 1 MTH 829 Complex Analysis

Joshua Ruiter

February 13, 2018

Lemma 0.1 (for Exercise 1). Let $z, w \in \mathbb{R}^{2}$. Then $z \cdot w>0$ if and only if the angle between z, w is less than $\frac{\pi}{2}$.

Proof. We have the equality $z \cdot w=\|z\|\|w\| \cos \theta$ where θ is the angle between z, w and $\theta \in[0, \pi]$. We know that $\|z\|,\|w\|>0$, so $z \cdot w>0 \Longleftrightarrow \cos \theta>0$. For $\theta \in[0, \pi]$, $\cos \theta>0 \Longleftrightarrow \theta>\frac{\pi}{2}$.
Note: In the following, part (b) is Exercise I.4.2 from the textbook.
Proposition 0.2 (Exercise 1). Let $z_{1}, z_{2} \in \mathbb{C}$ and think of them as vectors in the plane.

1. If $\bar{z}_{1} z_{2}$ is real, then z_{1}, z_{2} are collinear.
2. If $\bar{z}_{1} z_{2}$ is real and positive, then z_{1}, z_{2} are positive multiples of each other.
3. If $\bar{z}_{1} z_{2}$ is imaginary, then z_{1}, z_{2} are perpendicular.

Proof. First we prove (1). Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then

$$
\bar{z}_{1} z_{2}=\left(x_{1}-i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{1} y_{2}-y_{1} x_{2}\right)
$$

If $\bar{z}_{1} z_{2}$ is real, then $x_{1} y_{2}-y_{1} x_{2}=0$ so $x_{1} y_{2}=y_{1} x_{2}$. Now we consider three cases: (i) $x_{2}=0$, (ii) $y_{2}=0$ and $x_{2} \neq 0$, and (iii) $x_{2} \neq 0$ and $y_{2} \neq 0$.

In case (i), $x_{2}=0$, so z_{2} is purely imaginary, and one of x_{1} or y_{2} must be zero. If $y_{2}=0$, then $z_{2}=0$ so every z_{1} is collinear with it. If $x_{1}=0$, then z_{1} is also purely imaginary, so z_{1}, z_{2} are collinear. In case (ii), $y_{2}=0$ and $x_{2} \neq 0$, so $y_{1}=0$. Then both z_{1}, z_{2} are real, so they are collinear. In case (iii), we can divide the equation by x_{2} and y_{2} to get

$$
\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}} \quad x_{1}=\frac{y_{1}}{y_{2}} x_{2} \quad y_{1}=\frac{x_{1}}{x_{2}} y_{2}=\frac{y_{1}}{y_{2}} y_{2}
$$

Then $z_{1}=x_{1}+i y_{1}=\frac{y_{1}}{y_{2}} x_{2}+i \frac{y_{1}}{y_{2}} y_{2}=\frac{y_{1}}{y_{2}} z_{2}$, so they are collinear.
Now we prove (2). Suppose that $\bar{z}_{1} z_{2}$ is real and positive. By part (1), z_{1}, z_{2} are collinear. Notice that $\operatorname{Re} \bar{z}_{1} z_{2}=z_{1} \cdot z_{2}$. Thus by the previous lemma, the angle between z_{1}, z_{2} is less than $\frac{\pi}{2}, z_{1}, z_{2}$ must point in the same direction. Hence they are positive multiples of each other. Finally, we prove (3). If $\operatorname{Re} \bar{z}_{1} z_{2}=0$, then $z_{1} \cdot z_{2}=0$, so z_{1}, z_{2} are perpedicular.

Proposition 0.3 (Exercise I.7.2). Let z_{1}, z_{2}, z_{3} be points in the complex plane, with $z_{1} \neq z_{2}$. Then the distance from z_{3} to the line determined by z_{1} and z_{2} is

$$
\frac{1}{2\left|z_{2}-z_{1}\right|}\left|z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}-\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)\right|
$$

In particular, the points z_{1}, z_{3}, z_{3} are collinear if and only if $z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}+\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\right.$ $\left.\bar{z}_{2}\right)=0$.

Proof. We can apply the isometry $z \mapsto z-z_{1}$, so we can replace assume $z_{1}=0$ without loss of generality. Then we apply another isometry, rotation clockwise by $\arg z_{2}$, so we can also assume without loss of generality that z_{2} is on the positive real axis. Now, the line through the points z_{1}, z_{2} is the real axis, and the distance from z_{3} to this line is $\operatorname{Im} z_{3}$. After substituting $z_{1}=0$ and $\bar{z}_{2}=z_{2}$ we get

$$
\begin{aligned}
& \frac{1}{2\left|z_{2}-z_{1}\right|}\left|z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}-\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)\right|=\frac{1}{2\left|z_{2}\right|}\left|z_{2} \bar{z}_{3}-z_{3} z_{2}\right| \\
& =\frac{1}{2 z_{2}} z_{2}\left|\bar{z}_{3}-z_{3}\right|=\frac{1}{2}\left|\bar{z}_{3}-z_{3}\right|=\frac{1}{2}\left|x_{3}-i y_{3}-x_{3}-i y_{3}\right|=\frac{1}{2}\left|-2 i y_{3}\right|=\left|-i y_{3}\right|=\operatorname{Im} z_{3}
\end{aligned}
$$

Thus the quantity claimed is equal to the distance from z_{3} to the line determined by z_{1} and z_{2}.
(Proof of "In particular...") If the distance is zero, then
$\frac{1}{2\left|z_{2}-z_{1}\right|}\left|z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}-\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)\right|=0 \Longrightarrow z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}+\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)=0$
Conversely, if $z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}+\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)=0$, then the distance, given by $\frac{1}{2\left|z_{2}-z_{1}\right|}\left|z_{1}\left(\bar{z}_{2}-\bar{z}_{3}\right)+z_{2}\left(\bar{z}_{3}-\bar{z}_{1}\right)+z_{3}\left(\bar{z}_{1}-\bar{z}_{2}\right)\right|$, is zero.

Lemma 0.4 (for Exercise I.9.2). Let $a, b \in \mathbb{C}$ be nonzero. Then $\arg a=2 \arg b \Longleftrightarrow \bar{a} b^{2}$ is real and positive.

Proof. Suppose that $\arg a=2 \arg b$. Let $b=r_{b}(\cos \theta+i \sin \theta)$, so $a=r_{a}(\cos 2 \theta+i \sin 2 \theta)$ for some $r_{a}, r_{b}, \theta \in \mathbb{R}$ with $r_{a}, r_{b}>0$. Then using De Moivre's formula and expanding, we get

$$
\begin{aligned}
\bar{a} b^{2} & =r_{a}(\cos 2 \theta-i \sin 2 \theta) r_{b}^{2}(\cos \theta+i \sin \theta)^{2} \\
& =r_{a} r_{b}^{2}(\cos 2 \theta-i \sin 2 \theta)(\cos 2 \theta+i \sin 2 \theta) \\
& =r_{a} r_{b}^{2}\left((\cos 2 \theta)^{2}+(\sin 2 \theta)^{2}\right) \\
& =r_{a} r_{b}^{2}
\end{aligned}
$$

Hence $\bar{a} b^{2}$ is the positive real number $r_{a} r_{b}^{2}$. Now suppose that $\bar{a} b^{2}$ is real and positive. Write a and b as $a=r_{a}\left(\cos \theta_{a}+i \sin \theta_{a}\right)$ and $b=r_{b}\left(\cos \theta_{b}+i \sin \theta_{b}\right)$ for $r_{a}, r_{b}, \theta_{a}, \theta_{b} \in \mathbb{R}$ with $r_{a}, r_{b}>0$. Then

$$
\begin{aligned}
\bar{a} b^{2} & =r_{a}\left(\cos \theta_{a}-i \sin \theta_{a}\right) r_{b}^{2}\left(\cos 2 \theta_{b}+i \sin 2 \theta_{b}\right) \\
& =r_{a} r_{b}^{2}\left(\left(\cos \theta_{a} \cos 2 \theta_{b}+\sin \theta_{a} \sin 2 \theta_{b}\right)+i\left(\cos \theta_{a} \sin 2 \theta_{b}-\sin \theta_{a} \cos 2 \theta_{b}\right)\right)
\end{aligned}
$$

By hypothesis, $\bar{a} b^{2}$ is real, so

$$
\cos \theta_{a} \sin 2 \theta_{b}-\sin \theta_{a} \cos 2 \theta_{b}=0 \Longrightarrow \cos \theta_{a} \sin 2 \theta_{b}=\sin \theta_{a} \cos 2 \theta_{b}
$$

First suppose that both sides of this equality are zero. Then there are four cases: (1) $\cos \theta_{a}=$ $\sin \theta_{a}=0,(2) \cos \theta_{a}=\cos 2 \theta_{b}=0,(3), \sin 2 \theta_{b}=\sin \theta_{a}=0$, and (4) $\sin 2 \theta_{b}=\cos 2 \theta_{b}=0$. Case (1) implies that $a=0$ and case (4) implies $b=0$, which contradicts they hypothesis that $\bar{a} b^{2}>0$, so we rule out (1) and (4). In case (2), both a and b^{2} must be purely imaginary, that is, $a=\alpha i$ and $b^{2}=\beta i$ for some $\alpha, \beta \in \mathbb{R}$. Then

$$
\bar{a} b^{2}=-\alpha i \beta i=\alpha \beta>0
$$

so $\alpha, \beta>0$. Thus both a, b^{2} lie on the positive imaginary axis, so $\arg a=\frac{\pi}{2}$ and $\arg b=\frac{\pi}{4}$, so $\arg a=2 \arg b$. In case (3), both a and b must be purely real, and we have

$$
b^{2}>0 \text { and } \bar{a} b^{2}=a b^{2}>0 \Longrightarrow a>0
$$

Since b^{2} is real, $\arg b \in\{0,2 \pi\}$, so $2 \arg b=0=\arg a$. This concludes our consideration of the above four cases. Now assuming $\cos \theta_{a} \neq 0$ and $\cos 2 \theta_{b} \neq 0$, we can rewrite the equation

$$
\cos \theta_{a} \sin 2 \theta_{b}=\sin \theta_{a} \cos 2 \theta_{b}
$$

as

$$
\frac{\sin \theta_{a}}{\cos \theta_{a}}=\frac{\sin 2 \theta_{b}}{\cos 2 \theta_{b}} \Longrightarrow \tan \theta_{a}=\tan 2 \theta_{b}
$$

On the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the tangent function is injective, so $\theta_{a}=2 \theta_{b} \bmod 2 \pi$. That is, $\arg a=2 \arg b$.

Lemma 0.5 (for Exericse I.9.2). Let $z, w \in \mathbb{C}$. Then

$$
\bar{z} w+z \bar{w}=2(\operatorname{Re} z \operatorname{Re} w+\operatorname{Im} z \operatorname{Im} w) \in \mathbb{R}
$$

Proof. Let $z=x+i y$ and $w=u+i v$. The proof is simply a calculation:

$$
\bar{z} w+z \bar{w}=(x-i y)(u+i v)+(x+i y)(u-i v)=2(u x+v y)
$$

Proposition 0.6 (Exercise I.9.2). Let z_{1}, z_{3}, z_{3} be distinct points on the unit circle. Then

$$
\arg \frac{z_{1}}{z_{2}}=2 \arg \frac{z_{3}-z_{1}}{z_{3}-z_{2}}
$$

Proof. Let $a=\frac{z_{1}}{z_{2}}$ and $b=\frac{z_{3}-z_{1}}{z_{3}-z_{2}}$. Then

$$
\begin{aligned}
\bar{a} b^{2} & =\overline{\left(\frac{z_{1}}{z_{2}}\right)}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)^{2}=\frac{\bar{z}_{1}\left(z_{3}^{2}-2 z_{3} z_{1}+z_{1}^{2}\right)}{\bar{z}_{2}\left(z_{3}^{2}-2 z_{3} z_{2}+z_{2}^{2}\right)}=\frac{\bar{z}_{1} z_{3}^{2}-2 z_{3} z_{1} \bar{z}_{1}+z_{1}^{2} \bar{z}_{1}}{z_{3}^{2} \bar{z}_{2}-2 z_{3} z_{2} \bar{z}_{2}+z_{2}^{2} \bar{z}_{2}} \\
& =\frac{\bar{z}_{1} z_{3}^{2}-2 z_{3}\left|z_{1}\right|^{2}+z_{1}\left|z_{1}\right|^{2}}{\bar{z}_{2} z_{3}^{2}-2 z_{3}\left|z_{2}\right|^{2}+z_{2}\left|z_{2}\right|^{2}}=\frac{\bar{z}_{1} z_{3}^{2}-2 z_{3}+z_{1}}{\bar{z}_{2} z_{3}^{2}-2 z_{3}+z_{2}}=\frac{\bar{z}_{1} z_{3}^{2}-2 z_{3}+z_{1}}{\bar{z}_{2} z_{3}^{2}-2 z_{3}+z_{2}}\left(\frac{\bar{z}_{3}}{\bar{z}_{3}}\right) \\
& =\frac{z_{3} \bar{z}_{1}+z_{1} \bar{z}_{3}-2}{z_{3} \bar{z}_{2}+z_{2} \bar{z}_{3}-2}=\frac{z_{3} \bar{z}_{1}+\overline{\bar{z}_{1} z_{3}}-2}{z_{3} \bar{z}_{2}+\overline{\bar{z}_{2} z_{3}}-2}=\frac{\operatorname{Re} z_{3} \bar{z}_{1}-2}{\operatorname{Re} z_{3} \bar{z}_{2}-2}
\end{aligned}
$$

By the above lemma

$$
z_{3} \bar{z}_{1}+z_{1} \bar{z}_{3} \in \mathbb{R} \quad \text { and } \quad z_{3} \bar{z}_{2}+z_{2} \bar{z}_{3} \in \mathbb{R}
$$

so $\bar{a} b^{2} \in \mathbb{R}$ provided the denominator is nonzero. In addition, $z_{3} \bar{z}_{1}, z_{3} \bar{z}_{2}$ lie on the unit circle, so

$$
\begin{aligned}
& \operatorname{Re}\left(z_{3} \bar{z}_{1}\right)=x_{3} x_{1}+y_{3} y_{1}<1+1=2 \\
& \operatorname{Re}\left(z_{3} \bar{z}_{2}\right)=x_{3} x_{2}+y_{3} y_{2}<1+1=2
\end{aligned}
$$

Thus $\operatorname{Re} z_{3} \bar{z}_{1}-2<0$ and $\operatorname{Re} z_{3} \bar{z}_{2}-2<0$, so

$$
\bar{a} b^{2}=\frac{\operatorname{Re} z_{3} \bar{z}_{1}-2}{\operatorname{Re} z_{3} \bar{z}_{2}-2}>0
$$

Thus $\arg a=2 \arg b$.
Proposition 0.7 (Exercise I.11.1). The cube roots of i are

$$
\frac{\sqrt{3}}{2}+\frac{1}{2} i \quad-\frac{\sqrt{3}}{2}+\frac{1}{2} i \quad-i
$$

Proof. We have $i=1(\cos (\pi / 2)+i \sin (\pi / 2))$. Apply the formula in the book: The cube roots of i are

$$
(1)^{1 / 3}\left(\cos \left(\frac{\pi / 2+2 \pi k}{3}\right)+i \sin \left(\frac{\pi / 2+2 \pi k}{3}\right)\right)
$$

for $k=0,1,2$.
Proposition 0.8 (Exercise I.11.4). The sum of the nth roots of 1 equals zero for $n \geq 2$.
Proof. Let $\lambda=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$ be the primitive nth root of 1 . (Note: $n \geq 2 \Longrightarrow \lambda \neq 0$.) Then the nth roots of 1 are $\lambda, \lambda^{2}, \lambda^{3}, \ldots, \lambda^{n}$. Using the formula for the sum of a finite geometric progression,

$$
\lambda+\lambda^{2}+\ldots+\lambda^{n}=\frac{1-\lambda^{n}}{1-\lambda}
$$

Since $\lambda^{n}=1$, we have $1-\lambda^{n}=0$ so the sum is zero.
Proposition 0.9 (Exercise I.11.5, first identity). Let w be an n-th root of 1 with $w \neq 1$. Then for $n \geq 2$,

$$
\sum_{k=1}^{n} k w^{k-1}=1+2 w+3 w^{2}+\ldots+n w^{n-1}=\frac{n}{w-1}
$$

Proof. Let w be an n-th root of 1 with $w \neq 1$ and $n \geq 2$. First we separate out a sum $1+w+w^{2}+\ldots+w^{n-1}$, which by Exercise I.11.4 is zero.

$$
\sum_{k=1}^{n} k w^{k-1}=\sum_{k=1}^{n}\left(w^{k-1}+(k-1) w^{k-1}\right)=\sum_{k=1}^{n} w^{k-1}+\sum_{k=1}^{n}(k-1) w^{k-1}=\sum_{k=1}^{n}(k-1) w^{k-1}
$$

Now we shift indices by $(k-1) \mapsto k$. After shifting indices, the $k=0$ term is zero, so we can change the lowest index from zero to 1 . Finally, we factor out a w.

$$
\sum_{k=1}^{n}(k-1) w^{k-1}=\sum_{k=0}^{n-1} k w^{k}=\sum_{k=1}^{n-1} k w^{k}=w \sum_{k=1}^{n-1} k w^{k-1}
$$

Combining the work of the two previous strings of equalities, we get an identity to reduce the top index of the sum we want to consider.

$$
\sum_{k=1}^{n-1} k w^{k-1}=w^{-1} \sum_{k=1}^{n} k w^{k-1}
$$

Now we pull off the nth term and use our above identity.

$$
\sum_{k=1}^{n} k w^{k-1}=n w^{n-1}+\sum_{k=1}^{n-1} k w^{k-1}=n w^{n-1}+w^{-1} \sum_{k=1}^{n} k w^{k-1}
$$

Partially solving for our sum, we get

$$
\left(1-w^{-1}\right) \sum_{k=1}^{n} k w^{k-1}=n w^{n-1}
$$

Thus

$$
\sum_{k=1}^{n} k w^{k-1}=\frac{n w^{n-1}}{1-w^{-1}}=\frac{n w^{n-1}}{1-w^{-1}}\left(\frac{w}{w}\right)=\frac{n w^{n}}{w-1}=\frac{n}{w-1}
$$

Proposition 0.10 (Exercise I.11.5, second identity). Let w be an n-th root of 1 with $w \neq 1$. Then for $n \geq 2$,

$$
\sum_{k=1}^{n} k^{2} w^{k-1}=1+4 w+9 w^{2}+\ldots+n^{2} w^{n-1}=\frac{n^{2}}{w-1}-\frac{2 n}{(w-1)^{2}}
$$

Proof. Let w be an n-th root of 1 with $w \neq 1$ and $n \geq 2$. First we separate out terms $1+w+w^{2}+\ldots+w^{n-1}$, which is zero by Exercise I.11.4. Then we factor $k^{2}-1$ as a difference of squares.

$$
\sum_{k=1}^{n} k^{2} w^{k-1}=\sum_{k=1}^{n} w^{k-1}+\sum_{k=1}^{n}\left(k^{2}-1\right) w^{k-1}=\sum_{k=1}^{n}(k-1)(k+1) w^{k-1}
$$

Now we change indices $(k-1) \mapsto k$, and notice that the $k=0$ term is zero, so we can change the lower index back to 1 .

$$
\sum_{k=1}^{n}(k-1)(k+1) w^{k-1}=\sum_{k=0}^{n-1} k(k+2) w^{k}=\sum_{k=1}^{n-1}\left(k^{2}+2 k\right) w^{k}=\sum_{k=1}^{n-1} k^{2} w^{k}+2 \sum_{k=1}^{n-1} k w^{k}
$$

Now we apply the first identity, proved above, using the equality $\sum_{k=1}^{n-1} k w^{k}=\sum_{k=1}^{n} k w^{k-1}$ proved en route to the first identity.

$$
\sum_{k=1}^{n-1} k^{2} w^{k}+2 \sum_{k=1}^{n-1} k w^{k}=\sum_{k=1}^{n-1} k^{2} w^{k}+2 \sum_{k=1}^{n} k w^{k-1}=\left(\sum_{k=1}^{n-1} k^{2} w^{k}\right)+\frac{2 n}{w-1}
$$

Combining our work up to this point and rearranging terms, we have

$$
w \sum_{k=1}^{n-1} k^{2} w^{k-1}=\sum_{k=1}^{n-1} k^{2} w^{k}=\frac{-2 n}{w-1}+\sum_{k=1}^{n} k^{2} w^{k-1}
$$

Dividing through by w gives

$$
\sum_{k=1}^{n-1} k^{2} w^{k-1}=\left(w^{-1}\right)\left(\frac{-2 n}{w-1}+\sum_{k=1}^{n} k^{2} w^{k-1}\right)=\frac{-2 n}{w(w-1)}+w^{-1} \sum_{k=1}^{n} k^{2} w^{k-1}
$$

Now we return to working with our original sum. We split off the n-th term, and apply our formula above.

$$
\sum_{k=1}^{n} k^{2} w^{k-1}=n^{2} w^{n-1}+\sum_{k=1}^{n-1} k^{2} w^{k-1}=n^{2} w^{n-1}-\frac{2 n}{w(w-1)}+w^{-1} \sum_{k=1}^{n} k^{2} w^{k-1}
$$

Partially solving for our sum, we get

$$
\left(1-w^{-1}\right) \sum_{k=1}^{n} k^{2} w^{k-1}=n^{2} w^{n-1}-\frac{2 n}{w(w-1)}
$$

And then dividing through by $\left(1-w^{-1}\right)$ we get

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} w^{k-1} & =\frac{n^{2} w^{n-1}}{1-w^{-1}}-\frac{2 n}{w(w-1)\left(1-w^{-1}\right)}=\frac{n^{2} w^{n-1}}{1-w^{-1}}\left(\frac{w}{w}\right)-\frac{2 n}{(w-1)^{2}} \\
& =\frac{n^{2} w^{n}}{w-1}-\frac{2 n}{(w-1)^{2}}=\frac{n^{2}}{w-1}-\frac{2 n}{(w-1)^{2}}
\end{aligned}
$$

which is exactly the identity we wanted to show.
Proposition 0.11 (Exercise II.6.3, not assigned, but used in Exercise II.8.1). In polar coordinates, the Cauchy-Riemann equations are

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

Proposition 0.12 (Exercise II.8.1). Let f be holomorphic on an open disk D. If any of the following hold in D, then f is constant in D.

1. $f^{\prime}=0$
2. f is real-valued
3. $|f|$ is constant
4. $\arg f$ is constant

Proof. Throughout, let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$, and all statement are interpreted "in D ".
(1) Suppose $f^{\prime}=0$. Then by the Cauchy-Riemann equations, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}=\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$, so by the analogous result in real variables, u and v are constant. Hence f is constant.
(2) Suppose f is real-valued in D, that is, $v=0$, so $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$. Then by the CauchyRiemann equations $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$, so u and v are constant, so f is constant.
(3) Suppose $|f|$ is constant. Then

$$
f(x+i y)=r(x, y)(\cos \theta(x, y)+i \sin \theta(x, y))
$$

where $r(x, y)=|f|=r_{0}$ for some constant $r_{0} \in \mathbb{R}$, so

$$
u(x, y)=r_{0} \cos \theta(x, y) \quad v(x, y)=r_{0} \sin \theta(x, y)
$$

Then

$$
\frac{\partial u}{\partial r}=\frac{\partial v}{\partial r}=0
$$

So by the polar form of the Cauchy-Riemann equations (Exercise II.6.3),

$$
\frac{\partial v}{\partial \theta}=\frac{\partial u}{\partial \theta}=0
$$

That is, u and v do not depend on θ. Since they depend neither on r nor θ, they must be constant. Thus f is constant.
(4) Suppose $\arg f$ is constant. Then

$$
f(x+i y)=r(x, y)(\cos \theta(x, y)+i \sin \theta(x, y))
$$

where $\theta(x, y)=\arg f=\theta_{0}$ for some constant $\theta_{0} \in \mathbb{R}$, so

$$
u(x, y)=r(x, y) \cos \theta_{0} \quad v(x, y)=r(x, y) \sin \theta_{0}
$$

Then

$$
\frac{\partial u}{\partial \theta}=\frac{\partial v}{\partial \theta}=0
$$

So by the polar form of the Cauchy-Riemann equations (Exercise II.6.3), for all r we have

$$
\begin{aligned}
r \frac{\partial u}{\partial r} & =r \cos \theta_{0}=0 \\
-r \frac{\partial v}{\partial r} & =-r \sin \theta_{0}=0
\end{aligned}
$$

For any $\theta_{0} \in \mathbb{R}, \cos \theta_{0}$ and $\sin \theta_{0}$ are never zero at the same time, so we must have $r=0$ everywhere. Thus $f(z)=0$ for all z, so f is constant.

Lemma 0.13 (for Exercise II.8.2). Let f be a function defined on an open set $G \subset \mathbb{C}$ and $z_{0} \in G$, and suppose that the limit

$$
\lim _{z \rightarrow z_{0}} f(z)
$$

exists and is equal to L. Then the limit

$$
\lim _{\bar{z} \rightarrow \bar{z}_{0}} f(z)
$$

exists and is equal to L.
Proof. Let $\epsilon>0$. By hypothesis, there exists $\delta>0$ so that

$$
\left|z-z_{0}\right|<\delta \Longrightarrow|f(z)-L|<\epsilon
$$

Since $\left|z-z_{0}\right|=\left|\overline{z-z_{0}}\right|=\left|\bar{z}-\bar{z}_{0}\right|$, we have $\left|z-z_{0}\right|<\delta \Longleftrightarrow\left|\bar{z}-\bar{z}_{0}\right|<\delta$. Thus

$$
\left|\bar{z}-\bar{z}_{0}\right|<\delta \Longrightarrow|f(z)-L|<\epsilon
$$

so the limit

$$
\lim _{\bar{z} \rightarrow \bar{z}_{0}} f(z)
$$

exists and is equal to L.
Lemma 0.14 (for Exercise II.8.2). Let f be a function defined on an open set $G \subset \mathbb{C}$ and $z_{0} \in G$, and suppose that the limit

$$
\lim _{z \rightarrow z_{0}} f(z)
$$

exists and is equal to L. Then the limit

$$
\lim _{z \rightarrow z_{0}} \overline{f(z)}
$$

exists and and is equal to \bar{L}.
Proof. Let $\epsilon>0$. By hypothesis, there exists $\delta>0$ such that

$$
\left|z-z_{0}\right|<\delta \Longrightarrow|f(z)-L|<\epsilon
$$

Since $|f(z)-L|=|\overline{f(z)-L}|=|\overline{f(z)}-\bar{L}|$, we also have

$$
\left|z-z_{0}\right|<\delta \Longrightarrow|\overline{f(z)}-\bar{L}|<\epsilon
$$

Thus the claimed limit exists and is equal to \bar{L}.
Proposition 0.15 (Exercise II.8.2). Let f be holomorphic in the open set G. Then $g(z)=$ $\overline{f(\bar{z})}$ is holomorphic in $G^{*}=\{\bar{z}: z \in G\}$. In particular, for $z_{0} \in G^{*}$,

$$
g^{\prime}\left(z_{0}\right)=\overline{f^{\prime}\left(\bar{z}_{0}\right)}
$$

Proof. Let $z_{0} \in G^{*}$, so $\bar{z}_{0} \in G$. Since f is differentiable at \bar{z}_{0}, the limit

$$
\lim _{\bar{z} \rightarrow \bar{z}_{0}} \frac{f(\bar{z})-f\left(\bar{z}_{0}\right)}{\bar{z}-\bar{z}_{0}}
$$

exists and is equal to $f^{\prime}\left(\bar{z}_{0}\right)$. Then by Lemma 0.13 ,

$$
\lim _{z \rightarrow z_{0}} \frac{f(\bar{z})-f\left(\bar{z}_{0}\right)}{\bar{z}-\bar{z}_{0}}=f^{\prime}\left(\bar{z}_{0}\right)
$$

Using basic properties of the complex conjugate, we can rewrite our difference quotient as

$$
\frac{f(\bar{z})-f\left(\bar{z}_{0}\right)}{\bar{z}-\bar{z}_{0}}=\frac{\overline{g(z)}-\overline{g\left(z_{0}\right)}}{\bar{z}-\bar{z}_{0}}=\frac{\overline{g(z)-g\left(z_{0}\right)}}{\overline{z-z_{0}}}=\overline{\left(\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}\right)}
$$

Thus the limit

$$
\lim _{z \rightarrow z_{0}} \overline{\left(\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}\right)}
$$

exists and has value $f^{\prime}\left(\bar{z}_{0}\right)$. So by Lemma 0.14 ,

$$
\lim _{z \rightarrow z_{0}} \overline{\overline{\left(\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}\right)}}=\overline{f^{\prime}\left(\bar{z}_{0}\right)} \Longrightarrow \lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=\overline{f^{\prime}\left(\bar{z}_{0}\right)}
$$

Thus g is differentiable at z_{0}, with $g^{\prime}\left(z_{0}\right)=\overline{f^{\prime}\left(\bar{z}_{0}\right)}$. Thus g is holomorphic on G^{*}.
Proposition 0.16 (Exercise II.16.1). The function $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is harmonic $c=-3 a$ and $b=-3 d$. When u is harmonic, its harmonic conjugate is

$$
v(x, y)=d x^{3}-c x^{2} y+b x y^{2}-a y^{3}
$$

Proof. If u is harmonic, then

$$
\frac{\partial^{2} u}{\partial x^{2}}=6 a x+2 b y=-\frac{\partial^{2} u}{\partial y^{2}}=-6 d y-2 c x \Longrightarrow 6 a=-2 c \text { and } 2 b=-6 d
$$

Thus $c=-3 a$ and $b=-3 d$. Conversely, for any $a, d \in \mathbb{R}$, if we set $c=-3 a$ and $b=-3 d$, then u is harmonic, by the same calculation above. A harmonic conjugate v for u satisfies

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=3 a x^{2}+2 b x y+c y^{2} \Longrightarrow v=3 a x^{2} y+b x y^{2}+\frac{1}{3} c y^{3}+C(x) \\
& \frac{\partial v}{\partial x}=-b x^{2}-2 c x y-3 d y^{2} \Longrightarrow v=-\frac{1}{3} b x^{3}-c x^{2} y-3 b x y+D(y)
\end{aligned}
$$

Since $c=-3 a$ andd $b=-3 d$ by assumption,

$$
v(x, y)=d x^{3}-c x^{2} y+b x y^{2}-a y^{3}
$$

Proposition 0.17 (Exercise II.16.8). If u is a real-valued harmonic function, then the function $\frac{\partial u}{\partial z}$ is holomorphic.

Proof. Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be harmonic. Then define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(x+i y)=\frac{\partial u}{\partial z}(x, y)$.

$$
f=\frac{\partial u}{\partial z}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}\right)
$$

Then using the fact that mixed partials are equal,

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \frac{1}{2}\left(\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}\right) \\
& =\frac{1}{4}\left(\frac{\partial}{\partial x} \frac{\partial u}{\partial x}-i \frac{\partial}{\partial x} \frac{\partial u}{\partial y}+i \frac{\partial}{\partial y} \frac{\partial u}{\partial x}+\frac{\partial}{\partial y} \frac{\partial u}{\partial y}\right) \\
& =\frac{1}{4}\left(\frac{\partial^{2} u}{\partial x^{2}}-i \frac{\partial^{2} u}{\partial x \partial y}+i \frac{\partial^{2} u}{\partial y \partial x}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& =\frac{1}{4}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

which is zero since u is harmonic. Thus $\frac{\partial f}{\partial \bar{z}}=0$, so f is holomorphic.

